FINAL: COMMUTATIVE ALGEBRA I

Date: 15th November 2016

The Total points is 114 and the maximum you can score is 100 points.

A ring would mean a commutative ring with identity.

- (1) (3+3+3+3+3+3+3=24 points) Let R be a noetherian ring, I be a proper ideal in R. State **true or false**. (Proof not required).
 - (a) If I is a free R-module then I is a principal ideal.
 - (b) If S is a multiplicative subset of R then $S^{-1}R$ is a flat R-module.
 - (c) If R is a local ring then every finitely generated projective R-module is free.
 - (d) If I is a prime ideal then I^n is primary for all $n \ge 0$.
 - (e) If I is a primary ideal then $I = P^n$ for some prime ideal P in R.
 - (f) If I is a primary ideal of R then its radical \sqrt{I} is a prime ideal.
 - (g) R is artinian then Spec(R) is finite.
 - (h) $\operatorname{Spec}(R)$ is finite then R is artinian.
- (2) (10 points) Let R be a ring and S a multiplicative subset. Show that the contraction and extension of ideals between R and $S^{-1}R$ induces a bijection between $\{P \in \operatorname{Spec}(R) : P \cap S = \emptyset\}$ and $\operatorname{Spec}(S^{-1}R)$.
- (3) (5+15=20 points) Define integral extension. Let $A \subset B$ be integral extension of finite dimensional rings. Show that dimension of A and B are same.
- (4) (5+15=20 points) State Noether normalization theorem. Let k be a field of characteristic 0 and R be an integral domain which is also a finitely generated k-algebra. Show that the integral closure of R in its fraction field is a noetherian ring.
- (5) (10+5+5=20 points) Let k be a field, R = k[X, Y, Z] be the polynomial ring and $I = (X^2, XY, YZ, ZX)$. Compute the minimal prime ideals of I. Show that (X, Y, Z) is radical of a primary ideal which appear in a minimal primary decomposition of I. Is the minimal primary decomposition unique?
- (6) (5+15=20 points) Define valuation ring. Let R be a discrete valuation ring and m be its maximal ideal. Let \hat{R} be the m-adic completion of R. Show that \hat{R} is a discrete valuation ring.